Publications

2023

All kinds of simulations of the intergalactic medium, such as hydrodynamic simulation, N-body simulation, numerical and semi-numerical simulation, etc., have been used to realize the history of this medium. One of these simulations is 21SSD, which is specifically focused on the epoch of reionization. This simulation deepens our understanding of the physics behind the intergalactic medium by considering the free parameters related to the Wouthuysen-Field coupling fluctuations and X-ray and Lyman line transfers in the intergalactic medium, and by presenting the plots of the power spectrum, brightness temperature, etc. in different redshifts. However, due to many physical phenomena that play significant roles in this epoch, simulations of the intergalactic medium are usually extremely complex, time-consuming, and require very powerful hardware. In this work, by using the Support Vector Regression algorithm and based on the 21SSD simulation datasets, we have tried to make the machine fully understand the brightness temperature changes in terms of redshift for different astrophysical free parameters values. At first, we trained the machine with the results of the 21SSD simulation. Then, the machine was able to predict the brightness temperature in terms of redshift with very high accuracy for other interval coefficients. Although we have used this algorithm to estimate the brightness temperature, it seems that this algorithm can be easily used for other parts of cosmology and astrophysics. With its help, it is possible to save time and obtain results with extraordinary accuracy similar to complex simulations, even with normal hardware.
We study cosmological Lemaitre–Tolman–Bondi (LTB) black hole thermodynamics immersed in a quintom universe. We investigate some thermodynamic aspects of such a black hole in detail. We apply two methods of treating particles’ tunneling from the apparent horizons and calculate the black hole’s temperature in each method; the results of which are the same. In addition, by considering specific time slices in the cosmic history, we study the thermodynamic features of this black hole in these specific cosmic epochs. Also, we discuss the information loss problem and the remnant content of the cosmological black hole in different cosmic epochs in this context. We show that approximately in all the cosmic history, the temperature of the black hole’s apparent horizon is more than the temperature of the cosmological apparent horizon.
The thermal history of the intergalactic medium is full of extremely useful data in the field of astrophysics and cosmology. In other words, by examining this environment in different redshifts, the effects of cosmology and astrophysics can be observed side by side. Therefore, simulation is our very powerful tool to reach a suitable model for the intergalactic medium, both in terms of cosmology and astrophysics. In this work, we have simulated the intergalactic medium with the help of the 21cmFAST code and compared the evolution of the neutral hydrogen fraction in different initial conditions. Considerable works arbitrarily determine many important effective parameters in the thermal history of the intergalactic medium without any constraints, and usually, there is a lot of flexibility for modeling. Nonetheless, in this work, by focusing on the evolution of the neutral hydrogen fraction in different models and comparing it with observational data, we have eliminated many models and introduced only limited simulation models that could confirm the observations with sufficient accuracy. This issue becomes thoroughly vital from the point that, in addition to restricting the models through the neutral hydrogen fraction, it can also impose restrictions on the parameters affecting its changes. However, we hope that in future works, by enhancing the observational data and increasing their accuracy, more compatible models with the history of the intergalactic medium can be achieved.
Today, the existence of supermassive black holes (SMBHs) in the center of galactic halos is almost confirmed. An extremely dense region referred to as dark-matter spike is expected to form around central SMBHs as they grow and evolve adiabatically. In this work, we calculate the merger rate of compact binaries in dark-matter spikes while considering halo models with spherical and ellipsoidal collapses. Our findings exhibit that ellipsoidal-collapse dark-matter halo models can potentially yield the enhancement of the merger rate of compact binaries. Finally, our results confirm that the merger rate of primordial black hole binaries is consistent with the results estimated by the LIGO-Virgo detectors, while such results cannot be realized for binary neutron stars and primordial black hole-neutron star binaries.
Cosmic voids are known as underdense substructures of the cosmic web that cover a large volume of the Universe. It is known that cosmic voids contain a small number of dark matter halos, so the existence of primordial black holes (PBHs) in these secluded regions of the Universe is not unlikely. In this work, we calculate the merger rate of PBHs in dark matter halos structured in cosmic voids and determine their contribution to gravitational wave events resulting from black hole mergers recorded by the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO)-Advanced Virgo (aVirgo) detectors. Relying on the PBH scenario, the results of our analysis indicate that about 3 approximately 4 annual events of binary black hole mergers out of all those recorded by the aLIGO-aVirgo detectors should belong to cosmic voids. We also calculate the redshift evolution of the merger rate of PBHs in cosmic voids. The results show that the evolution of the merger rate of PBHs has minimum sensitivity to the redshift changes, which seems reasonable while considering the evolution of cosmic voids. Finally, we specify the behavior of the merger rate of PBHs as a function of their mass and fraction in cosmic voids and we estimate R(M_PBH, f_PBH) relation, which is well compatible with our findings.

2022

Cosmic voids are known as underdense substructures of the cosmic web that cover a large volume of the Universe. It is known that cosmic voids contain a small number of dark matter halos, so the existence of primordial black holes (PBHs) in these secluded regions of the Universe is not unlikely. In this work, we calculate the merger rate of PBHs in dark matter halos structured in cosmic voids and determine their contribution to gravitational wave events resulting from black hole mergers recorded by the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO)-Advanced Virgo (aVirgo) detectors. Relying on the PBH scenario, the results of our analysis indicate that about 3 ∼ 4 annual events of binary black hole mergers out of all those recorded by the aLIGO-aVirgo detectors should belong to cosmic voids. We also calculate the redshift evolution of the merger rate of PBHs in cosmic voids. The results show that the evolution of the merger rate of PBHs has minimum sensitivity to the redshift changes, which seems reasonable while considering the evolution of cosmic voids. Finally, we specify the behavior of the merger rate of PBHs as a function of their mass and fraction in cosmic voids and we estimate R ( M_ PBH , f_PBH ) relation, which is well compatible with our findings.
We study the primary entanglement effect on the decoherence of reduced-density matrices of scalar fields, which interact with other fields or independent mode functions. We study the (leading) tree-level evolution of the scalar bispectrum due to a coupling between two scalar fields. We show that the primary entanglement has a significant role in the decoherence of the given quantum state. We find that the existence of such an entanglement could couple dynamical equations coming from a Schrödinger equation. We show that if one wants to see no effect of the entanglement parameter in the decohering of the quantum system, then the ground state eigenvalues of the interaction terms in the Hamiltonian cannot be independent of each other Generally, including the primary entanglement destroys the independence of the interaction terms in the ground state. We show that the imaginary part of the entanglement parameter plays an important role in the decoherence process without posing any specific restriction to the interaction terms. Our results could be generalized to every scalar quantum field theory with a well-defined quantization of its fluctuations in a given curved space-time.
In this work, we calculate the merger rate of primordial black hole–neutron star (PBH–NS) binaries within the framework of ellipsoidal-collapse dark matter models and compare it with that obtained from spherical-collapse dark matter halo models. Our results exhibit that ellipsoidal-collapse dark matter halo models can potentially amplify the merger rate of PBH–NS binaries in such a way that it is very close to the range estimated by the LIGO–Virgo observations. In contrast, spherical-collapse dark matter halo models cannot justify PBH–NS merger events as consistent results with the latest gravitational wave data reported by the LIGO–Virgo collaborations. In addition, we calculate the merger rate of PBH–NS binaries as a function of PBH mass and fraction within the context of ellipsoidal-collapse dark matter halo models. The results indicate that PBH–NS merger events with masses of M_ PBH ​ ≤ 5M ⊙ , ​ M _ NS ​ ≃ 1.4M ⊙ ​ will be consistent with the LIGO–Virgo observations if f _ PBH ​ ≃ 1.
In this paper, we investigate the processes of evaporation and accretion of primordial black holes during the radiation-dominated era and the matter-dominated era. This subject is very important since usually these two processes are considered independent of each other. In other words, previous works consider them in such a way that they do not have a direct effect on each other, and as a result, their effects on the mass of primordial black holes are calculated separately. The calculations of this paper indicate that assuming these two processes independent of each other will lead to wrong results that only give correct answers within certain limits. In fact, in general, it is a mistake to consider the static state for the event horizon of primordial black holes and perform calculations related to their evaporation, while the radius of primordial black holes is constantly changing due to accretion. In addition, we show that considering the dynamic event horizon in some masses and in some times can lead to the shutdown of the Hawking evaporation process. This study is much more accurate and detailed than our previous study. These calculations show well the mass evolution of primordial black holes from the time of formation to the end of the matter-dominated era, taking into account both the main processes governing black holes: evaporation and accretion.
Inspired by string theory, Heisenberg’s uncertainty principle can be generalized to include the photon-electron gravitational interaction, which leads to the Generalized Uncertainty Principle (GUP). Although GUP considers gravitational uncertainty at the minimum fundamental length scale in physics, it does not consider the effects of spacetime curvature on quantum mechanical uncertainty relations. The Extended Uncertainty Principle (EUP) is a generalization of Heisenberg’s Uncertainty Principle that, unlike the GUP, applies to large length scales. GEUP is also a linear combination of EUP and GUP that creates minimal uncertainty on large length scales. The Einstein-Gauss-Bonnet theory (EGB) can be considered as one of the most promising candidates for modified gravity. In this paper, by using GUP, EUP, and GEUP, we intend to obtain the Hawking temperature of a four-dimensional EGB black hole in the asymptotically flat and (Anti)-de Sitter spacetime. We show that coupling constant, cosmological constant, mass, and radius significantly affect Hawking temperature and decrease or increase Hawking temperature depending on the chosen horizons.

2021

In this paper, we revisit the evaporation and accretion of primordial black holes (PBHs) during cosmic history and compare them to see if both of these processes are constantly active for PBHs or not. Our calculations indicate that during the radiation-dominated era, PBHs absorb ambient radiation due to accretion, and their apparent horizon grows rapidly. This growth causes the Hawking radiation process to practically fail and all the particles that escape as radiation from PBHs to fall back into them. Nevertheless, our emphasis is that the accretion efficiency factor also plays a very important role here and its exact determination is essential. We have shown that the lower mass limit for PBHs that have not yet evaporated should approximately be 10^14 g rather than 10^15 g. Finally, we study the effects of Hawking radiation quiescence in cosmology and reject models based on the evaporation of PBHs in the radiation-dominated era.